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Abstract 0 Electron donor-acceptor complexes for a group of quinolines 
and naphthalenes with 9-(dicyanomethylene)-2,4,7-trinitrofluorene in 
1,Zdichloroethane were studied by optical absorption methods. Asso- 
ciation constants, molar absorptivities, and charge-transfer transition 
energies were evaluated for each system, together with theoretically 
calculated orbital energies and complex geometries. In contrast to the 
association constants and structures reported for N-heterocycle-halogen 
complexes, these studies indicate that, with a moderately large *-electron 
acceptor, quinolines function as r- rather than n -  (lone-pair) donors. 
These results support inkrcalation models for drug-receptor interactions 
involving the quinoline moiety. 
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The possible role of electron donor-acceptor complexes 
in drug-receptor binding processes as well as in many other 
biological reactions has been widely discussed (1-5). For 
example, in the intercalation model (6-8) of antimalarial 
drug interactions, the parallel planar arrangement of DNA 
base pairs and the quinoline moiety of drugs such as pa- 
maquine and chloroyuine almost certainly involves some 
degree of 7r-electron interaction. 

The ubiquitous occurrence of N-heterocyclic com- 
pounds in living systems has prompted several investiga- 
tions into the nature of their complexes with various 
compounds (9-13). Although molecules such as pyridine 
and quinoline may function as either n- or n-electron do- 
nors, with a-acceptors, particularly iodine and iodine 
monochloride, binding is through the nitrogen lone-pair 
electrons (11,13-17). However, with n-acceptors, the re- 
sults are by no means as certain; conflicting interpretations 
have been reported (18-21). 

This study was initiated to: (a)  discover the mode of 
binding of quinoline and its simple derivatives to a mod- 
erately large n-electron acceptor, ( b )  determine the effects 
of different substituents on the complexing ability of 
quinoline, and (c) examine the implications of the resulting 
donor-acceptor model in drug-receptor interactions. The 
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present report describes optical absorption studies com- 
bined with theoretical calculations for complexes of amino- 
and hydroxyquinolines and their naphthalene analogs with 
9-(dicyanomethylene)-2,4,7-trinitrofluorene (I). 

EXPERIMENTAL 

Materials-Quinoline' was dried over potassium hydroxide and 
fractionally distilled a t  reduced pressure. 8-Hydroxyquinoline' was re- 
crystallized from toluene. 8-Aminoquinoline2, 5-aminoquinoline1, 1- 
hydroxynaphthalene*, and 1-aminonaphthalene' were purified by vac- 
uum sublimation. Naphthalene' was twice recrystallized from absolute 
ethanol. Isoquinoline' was fractionally distilled a t  reduced pressure. 
9-(Dicyanomethylene)-2,4,7-trinitrofluorene2 was twice recrystallized 
from acetonitrile. 1,2-Dichloroethane3 was purged with dry nitrogen (dew 
point less than -40') immediately before use. 

Spectroscopic Measurements-Optical absorption spectra for so- 
lutions with a fixed concentration of I and different donor concentrations 
were recorded4 a t  20 and 40'. Spectral data were collected using I-, 2-, 
or 5-cm matched quartz cells with either the pure solvent or an equimolar 
solution of I as reference. Absorption, if any, of the free donor was sub- 
tracted from the measured absorbance during the data analysis step. For 
each system, absorbance measurements were reproducible to f0.002 
absorbance unit. 

Data  Analysis-The reversible association of an electron donor, D ,  
with an electron acceptor, A ,  to form a 1:l molecular complex, A D ,  may 
be written as A + D = A D .  The association constant, K ,  for this reaction 
is given by: 

(Eq. 1 )  

where [Ale and [ D ) O  represent initial concentrations of A and D ,  re- 
spectively; and ( A D ]  is the equilibrium concentration of AD. If Beer's 
law is obeyed by AD in a wavelength region where free donor and acceptor 
do not absorb or where their contributions have been subtracted, the 
complex absorbance, A A ~ ,  will be: 

AAD = [AD)fnob (Eq. 2) 

where C A D  is the molar absorptivity of the complex and b is the path- 
length. Equations 1 and 2 can be combined to yield a modification of the 
Scatchard ( 2 2 )  equation: 

In this work, association constants and molar absorptivities for each 
donor-acceptor complex were computed5 by means of an iterative 
least-squares curve-fitting procedure (23). For each system, a Scatchard 
plot was generated from eight or more data sets, which consisted of initial 
donor and acceptor concentrations along with the absorbances a t  the 
charge-transfer band maximum. Values of K and C A D  were determined 
from the slopes and intercepts of these linear plots. 

Theoretical  Calculations-The Huckel molecular orbital (HMO) 
method (24) was applied to I and to each aromatic donor molecule. He- 
teroatom parameters used in this work followed closely the values rec- 
ommended by Streitwieser ( 2 5 ) .  The HMO atomic orbital coefficients 
and *-orbital energies were then used in a second-order perturbation 
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Figure 1-Scatchard plots with X = A*o([A]o + [D]o - [AD])/ 
([A]o[D]ob) and Y = Arn/([A]~[D]ob) for complexes ofZ with isoquinoline 
( I ) ,  quinoline (2 ) ,  8-hydroxyquinoline (3 ) ,  naphthalene ( 4 ) ,  .hmino-  
quinoline (5), I-hydroxynaphthalene (6) ,  8-aminoquinoline (71, and 
I-aminonaphthalene ( 8 )  in I,2-dichloroethane at 20'. 

treatment (26) to obtain binding energies and the most favorable 
geometries for the different complexes. 

RESULTS AND DISCUSSION 

Intensely colored mixtures are formed immediately upon combining 
1,2-dichloroethane solutions of the quinolines or naphthalenes with I. 

Monochloride Complexes 

Temper- K ,  Refer- 
ature M-' ence Complex Solvent 

Benzene-iodine Carbon 25' 0.15 16 

Naphthalene-iodine Carbon 25' 0.25 16 

Pvridine-iodine Carbon 25' 101 17 

tetrachloride 

tetrachloride 

tetrachloride 
C yclohexane 
Heptane 
Heptane 
Chloroform 

2,6-Lutidine-iodine Chloroform 
Quinoline-iodine Heptane 

Chloroform 
Benzene-iodine Carbon 

Naphthalene-iodine Carbon 

Pyridine-iodine Carbon 

2,6-Lutidine-iodine Carbon 

monochloride tetrachloride 

monochloride tetrachloride 

monochloride tetrachloride 

monochloride tetrachloride 

25' 
25' 
16.7 
28' 
28' 
25' 
28" 
25' 

107 
140 

' 290 
43.7 
26.2 
114.6 
69 
0.54 

25' 1.39 

25' 483,000 

25' 89,000 

27 
14 
11 
15 
15 
28 
15 
16 

16 

17 

17 
- 

Visible absorption spectra of these mixtures are characterized by broad 
featureless absorption bands, typical of electron donor-acceptor com- 
plexes. For each complex system, absorption data were collected near the 
wavelength maximum of the charge-transfer band for solutions covering 
a reasonably wide donor concentration range. From these absorbance 
values, association constants, K ,  and molar absorptivities, e ,  were com- 
puted using Eq. 3. Figure 1 shows typical Scatchard plots for several 
complex systems. Donor and acceptor concentrations, absorption max- 
ima, and computed K and 6 values are given in Table I. 

For comparison, association constants previously reported for aromatic 
hydrocarbon and N-heterocyclic donors with iodine and iodine mono- 
chloride are listed in Table 11. The large variations in K for the halogen 
complexes are readily attributable to different modes of binding for the 
two donor types. X-ray diffraction studies (29,30) of the N-heterocyclic 
complexes have shown a planar colinear arrangement of the interatomic 
axis of halogen acceptors with the nitrogen atom of the donors. This 
configuration is due to a relatively strong interaction of the nitrogen 
lone-pair electrons with an antibonding u-orbital of the acceptor. In the 
case of the hydrocarbons, only the comparatively less favorable *-electron 
donation is possible. 

In contrast to the marked increase in K for halogen-heterocycle over 
halogen-aromatic hydrocarbon complexes, association constants for 
interactions of the quinolines with I are somewhat lower than those of 
their naphthalene analogs. These results immediately suggest that, with 
I, both quinolines and naphthalenes form sandwich-type K-r complexes 
and that the presence of a nitrogen atom reduces slightly the donor ability 
of the r-system. This interpretation is further substantiated by other 
similarities between the two classes of donors. 

Substitution of both quinoline and naphthalene by electron-releasing 
groups is accompanied by increased association constants and by shifts 
in the charge-transfer absorption maxima to longer wavelengths. Effects 
of the amino group on both K and A,, are more pronounced than for the 

Table I-Experimental Details, Association Constants, and  Molar Absorptivities of 1' Complexes in  1,2-Dichloroethane 

Donor 
Concentration, xlnax, 

Donor M TemDerature nm K .  M-' f ,  M-' cm-' 

Naphthalene 

Quinoline 
Isoquinoline 
1 -Hydroxynaphthalene 

0.05-0.72 

0.08-0.72 
0.02-1.90 
0.02-0.09 

20' 488 1.98 f 0.03 
40' 485 1.52 f 0.04 
20' 440h 0.90 f 0.04 
20' 4756 0.54 f 0.006 
20' 560 3.64 f 0.04 
40' 555 3.28 f 0.11 

1150 f 60 
1150 f 70 
1500 f 40 
1130 f 100 
1060 f 30 
910 f 40 

8-Hydroxyquinoline 0.02-0.83 20' 495 1.03 f 0.07 1570 f 120 
40' 490 0.77 f 0.08 1600 f 50 

1-Aminonap hthalene 0.03-0.27 200 660 7.95 f 0.12 1280 f 10 
40" 665 5.56 f 0.09 1220 f 10 

5-Aminoquinoline 0.02-0.20 20' 600 3.02 f 0.06 1130 f 10 
40' 595 2.70 f 0.16 1000 f 50 

8-Aminoquinoline 0.007-0.05 20' 645 5.94 f 0.07 1230 f 20 
40' 640 1.03 f 0.11 1200 f 20 

Concentrations of I are 0.001 M for all systems except 8-aminoquinoline for which the concentration is 0.003 M .  Shoulder 
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Figure 2-Charge-transfer transition energies versus energies (in p 
units from the Huckel molecular orbital method) of the highest occupied 
donor orbitals for complexes of I with I-arninonaphthalene ( I ) ,  8- 
arninoquinoline (2), 5-arninoquinoline (3), I -hydrorynaphthalene (4),  
5-hydroxyquinoline (5),8-hydronyquinoline (61, naphthalene (7), is- 
oquinoline (8),  and quinoline (9). 

hydroxyl group. These trends are consistent with a greater electron-re- 
leasing tendency of the amino group as reflected by the respective 
Hammett u constants, U N H ~  = -0.660 and UOH = -0.357. Molecular or- 
bital calculations for amino- and hydroxyquinolines also showa greater 
electron-releasing effect for the amino derivatives, thereby making them 
better electron donors. 

Association constants for complexes of 8- and 5-aminoquinoline (Table 
I) indicate that the position of substitution also has a significant influence 
on donor strength. If, as a first approximation, the energy of the highest 
occupied T-molecular orbital is taken as a measure of donor ability, HMO 
calculations predict electron donor strengths in the order: 8 > 5 > 6 > 
3 > 4 > 7 > 2 > Ofor aminoquinolines and 8 > 5 > 4 > 6 > 3 > 7 > 2 > 0 
for hydroxyquinolines. 

Linear relationships between ionization potentials or orbital energies 
for a series of donors with a common acceptor were found in numerous 
cases (3). Figure 2 shows a plot of highest occupied donor orbital energies 
uersus charge-transfer transition energies for the complexes in this work. 
Points for both the quinolines and naphthalenes fall on a single straight 
line, indicating that the same mode of electron donation is operative in 
the two systems. 

Although molar absorptivities for the quinoline and 8-hydroxy- 
quinoline complexes show some enhancement, no systematic variations 
are apparent throughout the series. This behavior again differs from that 
of the halogen complexes, which show greatly increased absorptivities 
with N-heterocyclic donors. For example, a value of cmar approaching 
50,000 M-1 cm-l was reported for the pyridine-iodine complex (11). 

Since electron donor-acceptor complexes of the type discussed here 
involve weak interactions, typically 5-6 kcal/mole or less, even a moderate 
amount of steric hindrance near the binding site can lead to substantially 
reduced association constants. For complexes of iodine with methyl- 
substituted pyridines and quinolines, a two- to fivefold decrease between 
K’s  for the parent compound and 2,6-lutidine and complete suppression 
of complex formation with 7,8-benzoquinoline were reported (15, 17). 
If complexation through the nitrogen lone pair is important, substitution 
a t  the 8-position of quinoline would sterically hinder the approach of an 
acceptor, especially a molecule as large as I. Association constants for the 
complexes in the present work show no evidence of steric hindrance by 
substituents in the 8-position. In fact, just the reverse trend is noted 
(Table I). 

Stabilization energies computed by a second-order perturbation 

A 

B 

method (26) indicate that the most favorable geometry occurs for each 
complex system when donor and acceptor molecules are stacked in par- 
allel planes a t  an intermolecular distance of 3.3-3.4 A. Theoretical binding 
energies ranged from -3.7 kcal/mole for quinoline-I to -8.5 kcal/mole 
for 5-aminoquinoline-I. Minimum energy configurations for the quinoline 
and 8-aminoquinoline complexes with I are shown in Structures A and 
B, respectively, where dark circles represent nitrogen and open circles 
represent oxygen. The intermolecular distance is 3.35 8, in both cases, 
and the binding energies are -3.7 kcal/mole for Complex A and -5.7 
kcal/mole for Complex B. Calculations for both in-plane and perpen- 
dicular orientations of the interacting species result in net positive 
binding energies. 

CONCLUSIONS 

Molecular complexation through the *-electron system of quinolines 
is indicated by the following evidence. 

Association constants and molar absorptivities for quinoline complexes 
with I are of the same order of magnitude as those for naphthalenes where 
only r-donation is possible. 

A linear correlation is found between the highest occupied molecular 
orbital (HOMO) energies and charge-transfer band energies for each 
complex. Such correlations are characteristic of K-T complexes. 

A decrease in charge-transfer transition energies and an increase in 
association constants result from substitution of the quinoline or naph- 
thalene ring with electron-releasing groups. 

Little, if any, steric hindrance to complex formation is experienced on 
substitution at the 8-position in quinoline. 

Perturbation calculations favor a stacking of donor and acceptor 
molecules in parallel planes separated by 3.3-3.4 A. 

The r-complexing mode of quinolines in their interaction with the 
acceptor lends support to intercalation models of drug activity of quin- 
oline-based compounds (6-8). However, caution must be exercised in 
assigning mechanistic importance to these interactions until more sub- 
stantive evidence for the role of charge-transfer complexes in biological 
systems is demonstrated. 
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Abstract o The equilibrium constants, kinetics, and mechanism of 
promazine and promethazine oxidation by ferric perchlorate were in- 
vestigated at  different temperatures and acidities using a stopped-flow 
spectrophotometric technique. The overall reaction can be represented 
as follows: 

h i  
Fe(rrr) + P Fe(I1) + P+ 

k-1 

where P +  represents the radical cation corresponding to the phenothi- 
azine derivative. The equilibrium quotients were evaluated a t  1.00 M 
HC104, 25.0°, and ionic strength 1.0 M. The kinetics of reaction follow 
the eauation: 

--= d‘pl kl[Fe3+][P] - k-1[Fe2+][P+] 
dt 

The rate constants k l  and k-1 are independent of acidity and are related 
to the corresponding equilibrium quotients. 

Keyphrases Promazine-kinetics and mechanism of oxidation by 
ferric perchlorate, various temperatures and pH values 0 Prometha- 
zine-kinetics and mechanism of oxidation by ferric perchlorate, various 
temperatures and pH values Phenothiazines-promazine and pro- 
methazine, kinetics and mechanism of oxidation by ferric perchlorate, 
various temperatures and pH values Oxidation-kinetics and mech- 
anism, promazine and promethazine by ferric perchlorate, various tem- 
peratures and pH values Ferric perchlorate-oxidation of promazine 
and promethazine, kinetics and mechanism, various temperatures and 
pH values 

Free radicals of dialkylaminoalkylphenothiazine de- 
rivatives have been found in the urine of patients receiving 
phenothiazine drugs (1). Studies were carried out to elu- 

cidate both the role of such free radicals in biotransfor- 
mation and structure-activity relationships. 

Using electron spin resonance, Fenner (2,3) noted the 
influence of the electron-donating and electron-with- 
drawing groups on the ring, as well as that of the side chain 
bonded to the nitrogen (in position lo), on radical forma- 
tion. Investigation of the oxidation by inorganic agents also 
showed the large influence of the side chain (4,5). In par- 
ticular, the oxidation of the two isomers promazine’ [ 10- 
(3-dimethylaminopropyl)phenothiazine] (I) and pro- 
methazine2 [lo-( 2-dimethylaminopropyl)phenothiazine] 
(II), both with ammonium persulfate and ceric sulfate in 
aqueous solution at different pH values, gave different 
oxidation products (6,7). Moreover, I and I1 show different 
pharmacodynamic properties; I is an antidepressant and 
I1 is an antihistaminic. 

The differences in the behavior of these compounds 
toward oxidation suggested an investigation of the kinetics 

~H,CHN’ 
I \  

CH,CH,CH,N’ 
\ 

‘CH, 

I I1 
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